

WELD FREE PIPING SYSTEM

- ❖ PNEUMSYS ADVANCE ENERGY SOLUTIONS (PAES) is a 40 years experience turnkey project execution company with our activities encompassing complete applications from Air Piping, Flow Meters and Pneumatics accessories. Owing to our extensive experience in having executed 2000+ projects in the Indian Industry, Middle East & Asian region, PAES has gathered extensive experience & expertise in providing the best quality products and services.
- ❖ We deals in Aluminium Push-fit piping system (EQO Fluids), SS Crimping piping system (Pegler's), Flowmeters (VP flowmeter & ATD)and other pneumatics accessories (JG, CEJN)

Laboratory Equipment

Water Analysis Equipment

ALUMINIUM PUSH-IN PIPING SYSTEMS

- ✓ Aluminum piping for compressed air uses Push Fit technology
- ✓ Takes less time and no special tools required.
- ✓ Used for pressures up to 70 bar and the air system remains corrosion free and leakage free for years.
- ✓ Since welding is not required, it allows smooth flow of fluid inside the fluid. Can be re-open and again reassemble

Project Installations

TYPES OF DROPS IN ALUMINIUM PIPING

TYPES OF SUPPORTS

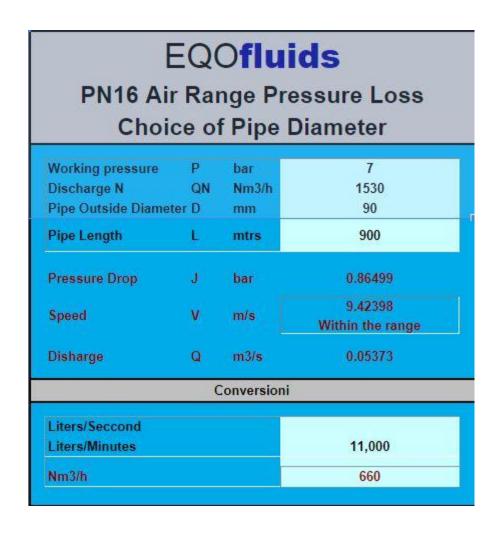
Metal Support Bracket

Girder Clamp

Suspended Support

Tie Rod

FLOW CALCULATOR


Flow Calculator is used to determine the pipe size, pressure drop, Speed, discharge etc.

Inputs are :-

- ✓ Working Pressure
- ✓ Discharge
- ✓ Pipe Diameter
- ✓ and Pipe Length.

Outputs are:-

- ✓ Pressure Drop
- ✓ Speed
- ✓ Discharge

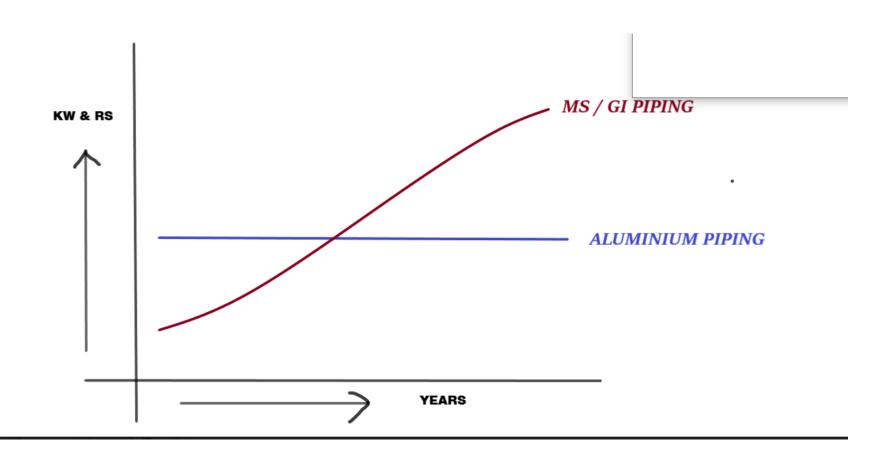
EQOFLUIDS PNEUMSYS PIPE DETAILS

	EXTRUSION P	IPE CHART	
SIZES OD	ID	THICKNESS	Wt./ mtr
20mm OD	17.6mm	1.2mm	0.191 Kg
25mm OD	22.4mm	1.3mm	0.261 Kg
32mm OD	29.4mm	1.3mm	0.338 Kg
40mm OD	36.8mm	1.6mm	0.521 Kg
50mm OD	46.8mm	1.6mm	0.656 Kg
63mm OD	59mm	2mm	1.03 Kg
90mm OD	84mm	03mm	2.21 Kg
110mm OD	104mm	3mm	2.72 Kg
160mm OD	151.4mm	4.3mm	5.67 Kg

INFORMATION & BENEFITS OF ALUMINIUM PIPING

- ✓ COMPLETELY ALUMINIUM PIPE & FITTINGS.
- ✓ 2 RANGES LOW PRESSURE 16 BAR & HIGH PRESSURE 70 BAR
- ✓ SIZES FROM 20MM TO 250MM
- ✓ APPLICATION LOW PRESSURE AIR, HIGH PRESSURE AIR, LOW PRESSURE NITROGEN, HIGH PRESSURE NITROGEN, VACUUM.
- ✓ 3 PIECE FITTING
- ✓ SS 304 SOLID MACHINED GRAB RING
- ✓ NITRILE O RING
- ✓ PIPE IS ALUMINIUM ALLOY 6061-T6
- ✓ NO SPECIAL TOOLS ARE REQUIRED.
- ✓ LISTE OF TOOLS REQUIRED (ONLY SPANNER, DRILL MACHINE, FILE, HOLE CUTTER. WHICH IS NORMAL AVAILABLE IN ALL THE INDUSTRIES. APART FORM THIS NO TOOLS ARE REQUIRED.

CLIENTS QUESTIONNARIES


☐ Why should I go with Aluminium Piping?

- ✓ LEAKAGE FREE SYSTEM
- ✓ LESS AND EASY MAINTAINANCE
- ✓ CORROSION FREE SYSTEM
- ✓ LONG LIFE
- ✓ 10 YEARS WARRANTY
- ✓ FRICTIONAL LOSSES IS NEGLIGIBLE.
- ✓ AESTHETIC LOOK
- ✓ INSTALLATION TIME REDUCES

HOW COSTLY IS ALUMINIUM PIPING AS COMPARED WITH CONVENTIONAL MS / GI PIPING?

- ✓ INITIAL COST IS HIGHER 1.3 TO 1.5 TIMES AND SOME TIMES PROJECT VALUE IS SAME. ITS DEPEND UPON THE SIZE AND LAYOUT.
- ✓ AS PER MY KNOWLEGDE NO COMPANY WILL SHUT DOWN OR CLOSED THERE PLANT AFTER 3 TO 4 YEARS.
- ✓ CONSIDERING LONG PERIOD OF TIME ITS VERY CHEAP.
- ✓ CORROSION IN MS / GI PIPING STARTS AFTER 3 YEARS & IT GOES ON INCREASING EVERY YEAR AT 3% TO 7%
- ✓ SURFACE ROUGHNESS IN MS/GI PIPING IS 0.0015MM AND ALUMINIUM PIPING IS 0.0015 MICRON. THUS SURFACE ROUGHNESS OF ALUMINIUM IS 1000 TIMES LESS THAN MS/GI
- ✓ INTERNAL SURFACE AREA GETS REDUCED
- ✓ DUE TO CORRISSION AND RUSTING

GRAPH SHOWING THE ROI FOR MS&GI V/S ALUMINIUM PIPING

HOW TO DO THE SIZING OF ALUMINIUM PIPING AS COMPARED TO GI/MS PIPING

CASE STUDY @ 600 CFM @ 7 BAR CONSIDERING LENGTH OF 105 MTRS (This

case we have considered in the offer along with internal piping offer):-

- USING 100 NB GI PIPE = 0.034 PRESSURE DROP
- ➤ USING OD 90 MM & ID 84MM ALUMINIUM PIPING = 0.0534 PRESSURE DROP.

Standard Working	Condit	SAVERE SHE	
1 Atmospheric Pressure	=	101300.00	N/m²
2 Air Density at atmospheric pressure and 20°C	=	1.29	kg/m
3 Kinematic viscosity v	=	0.00001461	m2/s
4 Average Roughness k	=	0.0002300	m
Pressure Drop Calculation i Input Condition		ninium Pipe	10
1 Working Pressure		700000.00	N/m²
2 Discharge		600.00	Cfm
3 Discharge		0.2683	m3/s
4 Outside Diameter		0.9000	m
5 Inside Diameter		0.0840	m
6 Length of Pipe		105.00	m
Result			
1 Air density at working		8.935	kg/m
2 Area of Pipe		0.0055	m2
IN CONTRACTOR OF THE PROPERTY		0.034	m3/s
3 Discharge		6.12	m/s
4 Speed			
		0.0255	

	Stall	dard Working C	onuitio	JII	
1	Atmospheric Pressure		=	101300	N/m²
2	Air Density at atmosph	eric pressure and 20°C	=	1.29	kg/m
3	Kinematic viscosity v		=	0.00001461	m2/s
4	Average Roughness k	(=	0.0015000	m
	Pressure	Drop Calculation		il Pipe	
1	Working Pressure			700000.00	N/m²
2	Discharge			600.00	Cfm
3	Discharge			0.2683	m3/s
4	Outside Diameter			0.1143	m
5	Inside Diameter			0.1023	m
6	Length of Pipe			105.00	m
Re	sult				
1	Air density at working			8.935	kg/m
2	Area of Pipe			0.008	m2
3	Discharge			0.034	m3/s
- A	Speed			4.13	m/s
4	COLUMN TO THE PARTY OF			0.0433	
	Frictional Coefficient			0.0455	

COMPARISON BETWEEN ALUMINIUM AND OTHER CONVENTIONAL PIPE

Aluminium Piping	GI & MS Piping
Light Weight and Modular. Hence Requires no heavy support and No skilled labors	Heavy and requires heavy supports. Also skilled labours (welders, fitters) are required.
Less Production down time as the system is modular (push to connect).	Production down time is more for additional work as there is a lot of welding work required.
The ID pipe is specially treated and hence does not react with water to form scaling and in turn gives laminar flow and no friction losses.	After a period of time the ID id pipe get corroded due to water and in turn gives turbulent flow which increase friction losses.
Leakage free for 10 years warranty.	The Joining of pipe is by welding. If not done properly will results in small leakages which will add to compressor working and maintenance

HOW COSTLY IS ALUMINIUM PIPING AS COMPARED WITH PLASTIC PIPING?

- ✓ PLASTIC PIPING IS CHEAPER AS COMPARED WITH ALUMINIUM PIPING.
- ✓ NO OTHER BENEFITS.
- ✓ PLASTIC PIPING REQUIRES FUSION WELDING
- ✓ DUE TO WHICH OBSTRACLE ARE CREATED IN THE INTERNAL SURFACE OF PIPING.
- ✓ THIS RESULTS IN PRESSURE DROP AS AIR STRIKES IN THE STEP CREATED BY FUSION WELDING
- ✓ PLASTIC PIPING IS BRITTLE AND IN HOT CLIMATIC CONDITION, CHANCES OF BURSTING, LEAKAGES MAY DEVELOPED
- ✓ PLASTICS PIPES HAVE CERTAIN DEFINATE LIFE
- ✓ HOGGING & SAGGING PROBLEM.
- ✓ PLASTIC PIPES ARE NOT RECOMMENDED FOR COMPRESSED AIR AS PER CAGI REPORTS
- ONLY SUITABLE FOR CHILLER PLANT PIPING AND OTHER WATER APPLICATION WHERE TEMPERATURE & PRESSURE IS VERY LOW.

PRESS-FIT PIPING SOLUTION

Press-Fit offers a comprehensive and flexible range for all modern building services, providing easy, fast, cost effective and reliable joints.

Advantages :-

- ✓ It offers all the benefits of a heat free, press-fit system, saving time and money with every joint.
- ✓ No complicated clamping techniques.

Safety:

- ✓ No naked flames Perfectly clean internal bore less finishing or cleaning required.
- ✓ No carbon deposits, internal solder runs or flux residue hence reduced risk of corrosion.
- ✓ They are made of different materials such as
 - > Stainless steel (SS 304)
 - > Stainless steel (SS 316)
 - > Copper

Advantages of The XPRESS Fittings are as below:-

- ✓ Major savings in installation time and cost compared with traditional jointing methods
- ✓ A completely heat-free joint system that requires no additional solders, adhesives, compounds, gas, hot works permits or costly insurance
- ✓ Clean, rapid, heat-free jointing
- ✓ No complicated clamping techniques
- ✓ No long preparation procedures or waiting for the adhesive to dry.
- ✓ Safety: no naked flames Perfectly clean internal bore less finishing or cleaning required
- ✓ No localized annealing from high-temperature working
- ✓ No carbon deposits, internal solder runs or flux residue hence reduced risk of corrosion
- ✓ The system does not need to be 'dry' for effective jointing.

Xpress Fittings O-Ring Compatibility Chart

Xpress fittings use the same O Ring technology to provide the best and widest range of heat free jointing. It is important to check compatibility between the O Ring and the fluid and the fluid in the system. The table below is a guide for the Contractor, installer and Specifier, and shows the compatibility of three O Ring materials with common fluid types and some gases.

EPDM - Ethylene Propylene Diene Monomer - This is the standard, BLACK O Ring that is used in Xpress COPPER ranges. This material is also used for the Leak before Press O Rings used in Xpress CARBON and Xpress STAINLESS STEEL

HNBR - Hydrogenated Nitrile Rubber - This is the YELLOW O Ring that is only used in Xpress GAS

FPM - Fluorocarbon Rubber - This is the GREEN O Ring that is only used in Xpress Solar

	Black	Yellow	Green
Designation	EPDM	HNBR	FPM
	Tectite/XPress	Gas	Solar
Fluids Resistance			
Acid	1		
Acetic 10%	111	~	1
Formic	111	×	~
Hydrochloric 20%	111	~	11
Nitric 30%	111	×	11
Phosphoric 20%	///	~	111
Sulphuric 30%	//	×	11
Alkalis	I		
Barium hydroxide	111	~~	111
Calcium hydroxide	111	~	111
Sodium hydroxide	111	11	11
Alcohols			
Butyl alcohol (Butanol)	VV	111	111
Ethyl alcohol (Ethanol)	111	11	1
Methyl alcohol (Methanol)	111	111	×
Amines			523.65
Ethylene diamine	111	11	X
Ammonia – cold gas	111	111	×
Ammonia – hot gas	1	×	×
Chlorides	1 1		
Ammonium chloride	111	111	111
Calcium chloride solution	111	111	111
Magnesium chloride	111	111	111
Zinc chloride	111	111	111
Gases			
Butane	x	111	111
Carbon dioxide (dry)	1	111	111
Chloride (wet)	· ·	×	111
Freon 12	11	111	11
Freon 21	x	x	×
Freon 22	111	×	×
Freon 134a	111		×
Natural gas	x	111	111
Methane	x	111	111
Propane	x	111	111
Oils and Fuels			
ASTM No 1 oil	×	111	111
ASTM No 2 oil	x	111	111
ASTM No 3 oil	X	111	111
ASTM fuel A	x	111	111
ASTM fuel B	x	11	111
ASTM fuel C	x	~	111
Diesel oil	x	111	111
Diesel oil + RME (10%)	x	×	111
Mineral oil (low aromatic)	×	111	111

These tables refer to room temperature tests. For other conditions and additional media advices please refer to Pegler Yorkshire for advice.

	Black	Yellow	Green
Designation	EPDM	HNBR	FPM
	Tectite/XPress	Gas	Solar
Maximum service			
temperature °C	180	100	230
Low service temperature °C	- 50	-20	-20
Water/Steam Resistance			50,000
Water/Steam resistance <40°C	111	111	111
Water/Steam resistance <80°C	111	11	111
Water/Steam resistance <150°C	11	×	-//
Water/Steam resistance >150°C	✓	×	-11

Water/Steam resistance >150°C	~	X	*//
	Black	Yellow	Green
Designation	EPDM	HNBR	FPM
	Tectite/XPress	Gas	Solar
Oils and Fuels cont			
Hydraulic oils (petroleum	500		
base)	×	111	111
Lubricating oils	×	111	111
Paraffin	×	111	111
Petrol	×	111	111
Silicone oil/grease	111	111	111
Transformer oils	×	111	111
Vegetable oils	~	111	111
Solvents	· · ·		
Acetone	111	×	×
Benzene	×	×	111
Carbon tetrachloride	×	~	111
Dimethyl formamide	11	~	×
Ethyl acetate	11	×	×
Methyl ethyl ketone	111	×	×
Tetrachloroethylene	×	×	111
Toluene	x	×	111
Turpentine	×	111	111
Xylene	x	×	11
Miscellaneous			-
Ethylene glycol	111	111	111
Detergents	111	111	111
Dioctyl phthalate	11	×	×
Formaldehyde	111	1	x
Hydrogen peroxide (90%)	11	×	11
Phosphate esters	111	×	1
Potassium nitrate	111	111	111

Key to Media Table	
111	Excellent – Recommended
11	Good – Minor to Moderate effects
✓	Fair – Moderate to severe effects
x	Poor – Not recommended
	Insufficient data available
* Conditions Apply	Temperature or other limitation affecting polymer choice

Contact

MUMBAI OFFICE: 301 & 302 on 3rd Floor, East West Industrial Center, Safed Pool, Andheri Kurla Rd, Andheri (E)

Mob. No. +91 99789 75499

E-mail ID : rl@pneumsysenergy.com Web : www.pneumsysenergy.com BANGALORE OFFICE: #1108/L, First Floor, 9th 'C' Main, Behind Hampinagar Bus Stand, RPC Layout, Vijaynagar, Bangalore - 560 040

Mob. No. +91 96633 79939

E-mail ID : Vinson@pneumsys.com Web : www.pneumsysenergy.com